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Abstract
In this paper we propose a kinetic model which properly incorporates the band-
trap capture and emission mechanism by including an evolution equation for the
trapped electrons. Mathematical results on equilibrium and stability and their
connections with thermodynamics are given. The recombination/generation
rate is calculated and compared with the Shockley, Read and Hall model.

PACS numbers: 05.60.Cd, 72.10.Bg, 72.10.Di

1. Introduction

It is well known that, in bipolar devices, an interacting population of positively charged
carrriers (holes) must be taken into account, besides electrons and phonons. The hole–
phonon interactions, similarly to electron–phonon, are emission/absorption phenomena.
Another important effect to be accounted for, essential in driving the process, is
generation/recombination of an electron–hole pair, which may occur in several ways.

There are different types of models in the physics of semiconductors [1] that describe the
transport of conduction band (c.b.) electrons (distribution function ne) and holes (distribution
function nh). The first one, i.e., the fluid model, relies on Shockley’s equations [2]. It is
based on the hypothesis that electrons and holes are drifted by the electric field and diffuse
due to density gradients. Such a phenomenological approach, however, does not work
in submicron devices. A more sophisticated approach, going deeper into the microscopic
world, is provided by the kinetic model introduced by Poupaud [3], which relies on a system
of nonlinear Boltzmann equations for electrons and holes and includes direct band–band
recombination/generation processes.

It is well known, however, that other mechanisms may be much more effective in several
meaningful physical situations [4]. For instance, if both the electron and hole densities are
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large enough, the Auger recombination generation, which includes three-body interactions,
cannot be neglected. On the other hand, if the electric field is high enough, impact ionization
becomes significant. Moreover, when physical conditions are far from high density and high
field regimes (and this is the scenario that is dealt with in this paper), the most important
recombination–generation mechanism is the band-trap capture and emission. This effect is
not included in the available models at a kinetic level [3]. In the literature one can find, to
our knowledge, only the phenomenological derivation by Shockley and Read [5] and Hall
[6] (SRH) of the recombination/generation rate at a macroscopic level. As is well known
[4], such a derivation lacks a rigorous justification, although it is generally accepted. In our
opinion, a full kinetic approach would be needed in order to investigate the whole process
rigorously and to possibly justify, in some continuum limit, the usually adopted SRH model.

In the present work we propose a new kinetic model which properly incorporates the
band-trap capture and emission mechanism by including an evolution equation for the trapped
electrons (distribution function nt). In particular we introduce the Boltzmann-like equations
for such a kinetic model, including the possibility that also phonons (distribution function
np) are not in local thermodynamical equilibrium, and behave then as a participating species.
The analysis is performed in the spirit of the mathematical methods of kinetic theory [7],
extended in order to deal with interactions which do not necessarily preserve momentum and
kinetic energy [8–10]. For generality, particles or quasi-particles are allowed to obey general
statistics, in order to possibly include non-standard or non-extensive effects [11]. We shall
follow the lines of a recent paper [12], in which a generalized kinetic theory of electrons and
phonons was proposed, reproducing the standard Fermi–Dirac and Bose–Einstein statistics as
a particular case. The same formalism will be adopted here, extended to holes and trapped
electrons. Collision integrals are represented in terms of suitable transition probabilities, and
the investigation is based on their structure and general properties only. In fact, in this general
approach, we are mainly interested in establishing fundamental results by exploiting the form
of collision terms and the conservation of the proper physical quantities, without introducing
explicit expressions or models for the microscopic collision probabilities. However, for further
analysis or specific applications, useful transition probabilities are listed in the specialized
literature (see for instance [1], as well as [13–15]). Our type of investigation leads to the
determination of collision invariants and collision equilibria, and to the proof of an H-theorem
[7]. The hydrodynamic limit is also studied by a preliminary asymptotic procedure with
respect to the proper Knudsen numbers.

After introducing notation, physical framework and governing equations in section 2,
mathematical results on equilibrium and stability and their connections with thermodynamics
are given in section 3 for four interacting populations (c.b. electrons, holes, phonons and
trapped electrons). Analogous steps are performed in section 4 for the similar but different
case of an open system made up of three interacting species in a phonon background
in local thermodynamical equilibrium, which is the most typical scenario for practical
applications. Finally, in section 5 we develop a singular perturbation approach (zero-order
Hilbert or Chapman–Enskog expansion [16]) aimed at deriving a hydrodynamic limit for the
macroscopic recombination/generation rate, to be compared with the phenomenological SRH
model [4].

2. Kinetic equations

Consider four populations: c.b. electrons (quasi-momentum (q.m.) p, energy εe(p)), trapped
electrons (q.m. p, energy εt(p)), holes (q.m. p, energy εh(p)), phonons (q.m. k, energy εp(k)).
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The distribution functions are normalized in such a way that the concentrations and the energy
densities of electrons, trapped electrons, holes are given by

Nα(x, t) = 1

8π3

∫
nα(p, x, t)2 dp Eα(x, t) = 1

8π3

∫
nα(p, x, t)εα(p)2 dp (1)

(α = e, h, t), respectively (the factor 2 inside these integrals accounts for degeneracy), while
the thermal energy density of the crystal is given by

Ep(x, t) = 1

8π3

∫
np(k, x, t)εp(k) dk. (2)

The recombination process that we are going to include occurs in two steps:

(1) a conduction band electron is trapped by emission of a phonon,
(2) a trapped electron fills a hole by emission of a phonon.

The generation process occurs correspondingly in two steps:
(3) a valence band electron is trapped by absorption of a phonon: a hole appears,
(4) a trapped electron moves to the conduction band by absorption of a phonon.

Processes (1) and (4) are obviously linked together and imply the gain (loss) of a phonon-
trapped electrons accompanied by the loss (gain) of a c.b. electron. An analogous statement
holds for processes (2) and (3), where a hole-trapped electron on one side, and a phonon on
the other are involved. All other more standard, interaction mechanisms will be taken into
account. They include the following processes [4]:

(i) phonon–phonon interaction, with the creation of a single phonon, and its inverse,
(ii) absorption and emission of a phonon by a c.b. electron,

(iii) absorption and emission of a phonon by a hole.

As usual, in the last case, the phonon is actually absorbed or emitted by a v.b. electron,
whose appearance (disappearance) corresponds of course to the loss (gain) of a hole.

All processes are assumed to satisfy microreversibility and to fulfil the laws of
transformation between pre- and post-collisional momenta and energies which are in order for
each specific mechanism. In particular, energy conservation holds for all interactions. For the
sake of generality, all types of particles are allowed to obey a given statistics, defined by a pair
of suitable smooth functions (ϕα, ψα), α = p, e, h, t, describing saturation or enhancement
effects in the departure/arrival state, respectively [12]. Quantities such as ϕα[nα(p)] will be
written as ϕα(p) for brevity. By following [12], we assume that ϕα/ψα is monotonically
increasing as a function of nα . Since the effects of quite cumbersome collision integrals
are going to be stressed in this paper, only the space homogeneous version of the kinetic
equations will be considered throughout. Also, to simplify notation, dependence on t will not
be explicitly shown hereafter, unless strictly necessary.

Taking into account all processes in which a specific species may be gained or lost, the
kinetic equations read
∂np

∂t
= I p

ppp[np](k) + I p
pee[np, ne](k) + I

p
phh[np, nh](k)

+ I
p
pte[np, nt, ne](k) + I

p
htp[nh, nt, np](k) = I p(k)

∂ne

∂t
= I e

pee[np, ne](p) + I e
pte[np, nt, ne](p) = I e(p) (3)

∂nh

∂t
= I h

phh[np, nh](p) + I h
htp[nh, nt, np](p) = I h(p)

∂nt

∂t
= I t

pte[np, nt, ne](p) + I t
htp[nh, nt, np](p) = I t(p).
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Here I δ
αβγ denotes the net collision contribution to the balance of species δ due to all interactions

which involve the triple (α, β, γ ). Such contributions in turn will be expressed in terms of the
appropriate scattering kernels Kαβγ , in the form

I p
ppp(k) = 1

16π3

∫∫
[Kppp(k

′, k′′; k) − Kppp(k, k′; k′′)] dk′ dk′′

I p
α (k) = − 1

4π3

∫∫
Kp

α(k, p′; p) dp dp′ α = pee, phh, pte

I
p
htp(k) = 1

4π3

∫∫
Khtp(p, p′; k) dp dp′

Iα
pαα(p) = 1

8π3

∫∫
[Kpαα(k, p′; p) − Kpαα(k, p; p′)] dk dp′ α = e, h

I e
pte(p) = 1

4π3

∫∫
Kpte(k, p′; p) dk dp′

I h
htp(p) = − 1

8π3

∫∫
Khtp(p, p′; k) dk dp′

I t
pte(p) = − 1

8π3

∫∫
Kpte(k, p; p′) dk dp′

I t
htp(p) = − 1

8π3

∫∫
Khtp(p

′, p; k) dk dp′.

(4)

The scattering kernels are given by

Kαβγ (v1, v2; v3) = Gαβγ (v1, v2; v3)[ϕα(v1)ϕβ(v2)ψγ (v3) − ψα(v1)ψβ(v2)ϕγ (v3)] (5)

where Gαβγ are the basic transition probabilities. The probability for phonon–phonon
interaction, Gppp, satisfies the obvious indistinguishability requirement Gppp(k

′, k′′; k) =
Gppp(k

′′, k′; k). All transition probabilities are to be understood in the sense of distributions,
since they have to account for energy and momentum balance. If b is an appropriate vector in
the reciprocal lattice [12], they can be written as follows:

Gαβγ (v1, v2; v3) = Gαβγ (v1, v2; v3)δ(v3 − v1 − v2 + b)δ[εγ (v3) − εα(v1) − εβ(v2)] (6)

where δ denotes Dirac’s delta measure, and G are positive smooth functions.
As usual in kinetic theory, the weak form of the kinetic equations (3) is essential for any

further development. So, take a string of four smooth test functions

(
p(k),
e(p),
h(p),
t(p)) (7)

and multiply each of them by the corresponding collision operator appearing in (3), namely
I p(k), I e(p), I h(p), I t(p), respectively. Then integrate each pair with respect to the relevant
kinetic variable and sum up them, after multiplication by two when appropriate because of
degeneracy, to get the functional

W(
p,
e,
h,
t) =
∫


p(k)I p(k) dk + 2
∑

α

∫

α(p)I α(p) dp α = e, h, t. (8)

By introducing the functions

Lαβγ (v1, v2; v3) = Kαβγ (v1, v2; v3)[
γ (v3) − 
α(v1) − 
β(v2)] (9)
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and by inserting (4) into (8), it is possible to prove that the functional W can be written as

W(
p,
e,
h,
t) = 1

16π3

∫∫
Lppp(k

′, k′′; k) dk dk′ dk′′

+
1

4π3

∑
α

∫∫
Lα(k, p′; p) dk dp dp′ +

1

4π3

∫∫∫
Lhtp(p, p′; k) dp dp′ dk

(10)

where α = pee, phh, pte.
On physical grounds, W represents the net production by collisions of the molecular

property defined by the string (7). It is clear that electric charge and energy are conserved in
all interactions, and indeed it is easily seen by inspection that, irrespective of the distribution
functions nα,W(0,−1, +1,−1) = 0 and W(εp, εe, εh, εt) = 0 (the delta measures involved
in (6) must be invoked for the latter, and the electron charge has been factored out for the
former). The same does not occur for instance to the string (1, 1, 1, 1), representing particle
number, which in fact is not conserved by collisions. Collision invariants in the spirit of kinetic
theory [9] are defined as the strings 
α, α = p, e, h, t, for which


p(k) = 
p(k
′) + 
p(k

′′) ∀k = k′ + k′′ − b1(k
′, k′′, k) εp(k) = εp(k

′) + εp(k
′′)


e(p) = 
p(k) + 
e(p
′) ∀p = k + p′ − b2(k, p′, p) εe(p) = εp(k) + εe(p

′)

h(p) = 
p(k) + 
h(p

′) ∀p = k + p′ − b3(k, p′, p) εh(p) = εp(k) + εh(p
′)


e(p) = 
p(k) + 
t(p
′) ∀p = k + p′ − b4(k, p′, p) εe(p) = εp(k) + εt(p

′)

p(k) = 
h(p) + 
t(p

′) ∀k = p + p′ − b5(p, p′, k) εp(k) = εh(p) + εt(p
′).

(11)

Since energy is the only conserved quantity for phonons, 
p(k) = εp(k) is the unique
solution to the first of conditions (11), apart from the trivial 
p(k) = 0 [12]. Then all other

 defining collision invariants may be determined in cascade, under the usual continuity
assumption. From 
p = εp the same argument leads to 
e = εe,
h = εh and 
t = εt (from
both the fourth and fifth conditions). From 
p = 0 there follow 
e = constant = c2,
h =
constant = c3, and simultaneously 
t = c2 and 
t = −c3, yielding the string (0,−c, c,−c),
where multiplicative constants are not essential because of the linearity of conditions (11).
This leads to the conclusion

Proposition 1. Collisional invariants constitute a 2D linear space, generated by the strings
of test functions

(0,−1, 1,−1) (12a)

and

(εp(k), εe(p), εh(p), εt(p)). (12b)

The first string represents the (dimensionless) electric charge and the second the energy.

3. Equilibrium and stability

The structure of (10) suggests that it is useful to introduce a new functional D

D(np, ne, nh, nt) = W

(
log

ϕp

ψp
, log

ϕe

ψe
, log

ϕh

ψh
, log

ϕt

ψ t

)
. (13)

By using (5), (9) and (10), we see at once that D is given by a sum of five integrals with
integrands of type

Gαβγ (v1, v2; v3)[ϕα(v1)ϕβ(v2)ψγ (v3) − ψα(v1)ψβ(v2)ϕγ (v3)] log
ψα(v1)ψβ(v2)ϕγ (v3)

ϕα(v1)ϕβ(v2)ψγ (v3)

(14)
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αβγ = ppp, pee, phh, pte, htp. Here, G, ϕ and ψ are positive functions. Since (1−x) log(x) �
0 ∀x � 0, with equal sign only for x = 1, it follows that D � 0. In addition, D vanishes if
and only if each of the kernels (14) vanishes, and this occurs, under the usual positivity and
continuity assumptions, if the content of the relevant square bracket is identically zero. We
have thus proved the pertinent version of the familiar Boltzmann inequality of kinetic theory,
which may be stated as follows.

Proposition 2. D � 0 for any admissible distribution function (np, ne, nh, nt). In particular,
D = 0 if and only if the string(

log
ϕp

ψp
, log

ϕe

ψe
, log

ϕh

ψh
, log

ϕt

ψ t

)
(15)

is a collision invariant.

The immediate consequence of this is that equilibria for the initial value problem (3),
defined as the distribution functions for which

I p
ppp + I p

pee + I
p
phh + I

p
pte + I

p
htp = 0 ∀ k

I e
pee + I e

pte = 0 ∀ p

I h
phh + I h

htp = 0 ∀ p

I t
pte + I t

htp = 0 ∀ p

(16)

are identified as those distributions for which the string (15) is a collision invariant (detailed
balance principle). It is sufficient in fact to note that (16) implies D = 0, which implies that
(15) is a collision invariant, which finally leads back, by direct substitution, to (16).

Now proposition 1 applies, namely equilibria are determined from the fact that (15)
must be a linear combination of the two invariants (12). Consequently, they constitute a
two-parameter family of distribution functions. Explicitly, the infinitely many solutions to
equation (16) are provided by the equations

ϕp[np]

ψp[np]
= exp[bεp(k)]

ϕe[ne]

ψe[ne]
= exp[−a + bεe(p)]

ϕh[nh]

ψh[nh]
= exp[a + bεh(p)]

ϕt[nt]

ψ t[nt]
= exp[−a + bεt(p)]

(17)

with arbitrary admissible real numbers a and b < 0. The usual condition that all ϕα/ψα are
monotonic functions of their argument [12] ensures unique solvability of equations (17) with
respect to their unknowns nα . Equilibrium solutions will be labelled by a star hereafter.

Concerning stability of the above equilibria, it is possible to establish an H-theorem, again
along the lines of kinetic theory. Introduce the functional

H [np, ne, nh, nt] =
∑

α

Hα[nα]

Hα[nα] =
∫

Hα[nα(p)] dp α = e, h, t H p[np] =
∫

Hp[np(k)] dk

(18)

with the integrands Hα defined by

dHp(x)

dx
= log

ϕp(x)

ψp(x)

dHα(x)

dx
= 2 log

ϕα(x)

ψα(x)
α = e, h, t. (19)

Note that in our assumptions all Hα are then convex functions of their argument. We can then
prove
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Proposition 3. H is a strict Lyapunov functional for the initial value problem (3), in the sense
that H and Ḣ are positive and negative definite, respectively, with respect to equilibrium.

In fact, following a solution of (3), the time derivative of H is in turn a functional, and
coincides exactly with D. Therefore Ḣ � 0, and Ḣ = 0 only at equilibrium. Moreover, it is
not difficult to show, by convexity arguments, that∫ [

Hp − H∗
p −

(
∂Hp

∂np

)∗
(np − n∗

p)

]
(k) dk

+
∑

α

∫ [
Hα − H∗

α −
(

∂Hα

∂nα

)∗
(nα − n∗

α)

]
(p) dp � 0 α = e, h, t (20)

where the equal sign holds if, and only if, the distribution function {nα} equals the equilibrium
{n∗

α}. On the other hand, using the expressions of (log ϕα/ψα)∗ and resorting to both
conservation laws, one can deduce∫ (

∂Hp

∂np

)∗
(np − n∗

p)(k) dk +
∑

α

∫ (
∂Hα

∂nα

)∗
(nα − n∗

α)(p) dp = 0. (21)

Finally, combination of (20) and (21) yields

H − H ∗ =
∫

(Hp − H∗
p)(k) dk +

∑
α

∫
(Hα − H∗

α)(p) dp � 0 ∀{nα} (22)

with equal sign if and only if {nα} coincides with {n∗
α}, which completes the proof.

Of course, these mathematical results can be interpreted on physical grounds in terms of
the second law of thermodynamics. By introducing in fact that entropy density S = ∑

α Sα ,
with Sα = −Hα/(8π)3, it is apparent that proposition 3 is nothing but the entropy inequality
Ṡ � 0. In addition, equations (18) and (19), equipped with the equilibrium conditions (17),
allow us to express all Sα and S at equilibrium. Moreover, it is possible to compute their
derivatives with respect to any thermodynamical variable y. It is not difficult to verify that(

∂Sp

∂y

)∗
= − ∂

∂y
(bEp)

(
∂Se

∂y

)∗
= ∂

∂y
(a Ne − bEe)

(
∂Sh

∂y

)∗
= − ∂

∂y
(a Nh + bEh)

(
∂S t

∂y

)∗
= ∂

∂y
(a Nt − bEt)

(23)

where Nα and Eα are given by (1) and (2). Recalling the thermodynamical definitions of
absolute temperatures Tα and chemical potentials µα as

1

Tα

=
(

∂Sα

∂Eα

)∗

Nα

α = p, e, h, t µα = −Tα

(
∂Sα

∂ Nα

)∗

Eα

α = e, h, t (24)

we realize that equilibrium is characterized by a common temperature Tα = T = −1/b,∀α,
while chemical potentials are related by µe = −µh = µt = µ = −aT , so that the parameters
a and b have a clear interpretation as global thermodynamical properties of the mixture. Note
that we have included the Boltzmann constant into our variables T, so that temperatures are
measured in energy units in the present setting. Equilibria may then be rewritten as(

ϕp

ψp

)∗
(k) = exp

[
−εp(k)

T

] (
ϕe

ψe

)∗
(p) = exp

[
µ − εe(p)

T

]
(

ϕh

ψh

)∗
(p) = exp

[
−µ + εh(p)

T

] (
ϕt

ψ t

)∗
(p) = exp

[
µ − εt(p)

T

] (25)

in terms of the free parameters T > 0 and µ ∈ R.
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4. Electrons and holes in a phonon background

Since relaxation due to phonon–phonon processes is much faster than for all other interactions,
phonons can be treated as a host medium in thermodynamical equilibrium at a fixed temperature
T in most of the applications. These assumptions amount to discarding the kinetic equation
for phonons, and to replacing np by the equilibrium distribution n∗

p in the kinetic equations
for c.b. electrons, holes and trapped electrons. All previous steps may be adapted to the new
scenario in a spontaneous way. The kinetic equations read

∂ne

∂t
= Î e

ee[ne](p) + Î e
te[nt, ne](p) = Î e

∂nh

∂t
= Î h

hh[nh](p) + Î h
th[nt, nh](p) = Î h

∂nt

∂t
= Î t

et[ne, nt](p) + Î t
ht[nh, nt](p) = Î t

(26)

with

Î α
αα = 1

4π3

∫
K̂αα(p′, p) dp′ α = e, h

Î
β

αβ = 1

8π3

∫
K̂αβ(p′, p) dp′ αβ = et, te, ht, th.

(27)

The scattering kernels are given by

K̂αβ(p′, p) = Ĝαβ(p′, p)

{
ϕα(p′)ψβ(p) − exp

[
εβ(p) − εα(p′)

T

]
ψα(p′)ϕβ(p)

}

αβ = ee, hh, et, te

K̂αβ(p′, p) = Ĝαβ(p′, p)

{
ψα(p′)ψβ(p) − exp

[
εβ(p) + εα(p′)

T

]
ϕα(p′)ϕβ(p)

}

αβ = ht, th

(28)

with

Ĝαα(p′, p) = 1

2

∫ [
Gpαα(k, p′; p)ϕ∗

p(k) + Gpαα(k, p; p′)ψ∗
p(k)

]
dk α = e, h

Ĝte(p
′, p) =

∫
Gpte(k, p′; p)ϕ∗

p(k) dk

Ĝet(p
′, p) =

∫
Gpte(k, p; p′)ψ∗

p(k) dk = exp

[
−εt(p) − εe(p

′)
T

]
Ĝte(p, p′)

Ĝht(p
′, p) =

∫
Ghtp(p

′, p; k)ϕ∗
p(k) dk = Ĝth(p, p′).

(29)

The analogue of the functional W is

Ŵ [
e,
h,
t] = 2
∑

α

∫

α(p)Î α(p) dp α = e, h, t. (30)

Again, by introducing the functions

L̂αβ(p′, p) = K̂αβ(p′, p)[
β(p) − 
α(p′)] αβ = ee, hh, te

L̂th(p
′, p) = K̂th(p

′, p)[
h(p) + 
t(p
′)]

(31)

it is possible to write Ŵ as the sum

Ŵ [
e,
h,
t] = 1

4π3

∑
α

∫∫
L̂α(p′, p) dp dp′ α = ee, hh, te, th. (32)
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The usual definition of collision invariant yields a unique linearly independent invariant,
namely the string (−1, 1,−1), representing (dimensionless) electric charge. Of course, energy
is no longer an invariant, since it is exchanged with the background lattice by collisions.
Furthermore, the quantity (see also [17])

D̂[ne, nh, nt] = Ŵ

[
log

(
ϕe

ψe
eεe/T

)
, log

(
ϕh

ψh
eεh/T

)
, log

(
ϕt

ψ t
eεt/T

)]

is given by a sum of four integrals with integrands of types

Ĝαβ(p′, p)

{
ϕα(p′)ψβ(p) − exp

[
εβ(p) − εα(p′)

T

]
ψα(p′)ϕβ(p)

}

× log

{
ϕα(p′)ψβ(p)

ψα(p′)ϕβ(p)
exp

[
−εβ(p) − εα(p′)

T

]}
(33)

Ĝth(p
′, p)

{
ψ t(p

′)ψh(p) − exp

[
εh(p) + εt(p

′)
T

]
ϕt(p

′)ϕh(p)

}

× log

{
ψ t(p

′)ψh(p)

ϕt(p′)ϕh(p)
exp

[
−εh(p) + εt(p

′)
T

]}

αβ = ee, hh, te. Therefore, by the same arguments leading to proposition 2, we may conclude
that D̂ � 0 for any admissible distribution function (ne, nh, nt), and that D̂ = 0 if and only if
the string

log

[
ϕα(p)

ψα(p)
expεα(p)/T

]
α = e, h, t (34)

is a collision invariant. Since this last requirement implies Î e = Î h = Î t = 0 ∀p, which in
turn implies D̂ = 0, the detailed balance principle is again established, and consequently we
have (in obvious agreement with equation (25)).

Proposition 4. The equilibrium condition

Î e = Î h = Î t = 0 ∀p (35)

admits exactly a one-parameter family of solutions, namely(
ϕe

ψe

)∗
(p) = exp

[
µ − εe(p)

T

] (
ϕh

ψh

)∗
(p) = exp

[
−µ + εh(p)

T

]
(

ϕt

ψ t

)∗
(p) = exp

[
µ − εt(p)

T

] (36)

with µ ∈ R, where T is the background temperature.

It is also possible to prove an H theorem for the study of stability by introducing the
functional

Ĥ [ne, nh, nt] =
∑

α

Hα[nα] +
2

T

∑
α

∫
εα(p)nα(p) dp (37)

where α takes the values e, h, t, and Hα is defined by (18) and (19). We have

Proposition 5. Ĥ is a strict Lyapunov functional for the initial value problem (26).

For a sketch of the proof (which closely resembles that of proposition 3), it is first easily
verified that ˙̂H = D̂, which ensures the proper definiteness in sign for ˙̂H itself. Then, for
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any distribution function different from equilibrium, equation (20) holds by convexity, even
without the integral with respect to k. Now charge conservation during the evolution reads

∑
α

∫ [(
∂Hα

∂nα

)∗
+

2

T
εα

]
(nα − n∗

α) dp = 0 (38)

and therefore it is easy to check that, for {nα} �= {n∗
α},

Ĥ − Ĥ ∗ =
∑

α

∫ [
Hα − H∗

α +
2

T
εα(nα − n∗

α)

]
(p) dp > 0 (39)

which completes the proof.
Again, previous results have a clear physical interpretation. Bearing the definition of the

single entropies Sα and of the total entropy S = ∑
α Sα in mind, one can define temperature

and chemical potential for each species, and realize that equilibrium is characterized by
T e = T h = T t = T and by µe = −µh = µt = µ, where T is the phonon temperature and µ a
free parameter. Moreover, setting

E = Ee + Eh + Et (40)

for the total energy, it is easily realized that the irreversibility condition ˙̂H � 0 for the open
system of the three-species mixture in the lattice is nothing but the well-known Clausius
inequality Ṡ � Ė/T .

5. Recombination/generation rate

As usual in kinetic theory it is convenient to introduce an appropriate scaling in
equation (26). Then, macroscopic equations at a hydrodynamic level can be derived by
an asymptotic procedure. The scaling is performed according to the typical values of the
various characteristic times, which are the macroscopic time and the relaxation times of the
four interaction mechanisms taken into account, namely those involving the pairs ee, hh, te, th.
The ratio of a microscopic mean free path to a typical macroscopic length is usually referred to
as a Knudsen number [9], and it coincides with the ratio between the corresponding time scales,
when, as typical in kinetic theory, macroscopic and microscopic speeds are assumed to be of the
same order of magnitude [7]. All relaxation times are typically very short on the macroscopic
scale, and, in the physical applications we are interested in, the generation/recombination
processes, te and th, which involve trapped electrons, are much slower than the usual electron–
phonon interactions affecting only electrons within the separate conduction and valence bands
(ee and hh) [4]. Therefore, the Knudsen numbers relevant to ee and hh processes are much
smaller than the other two. These facts define the level of importance of the various collision
terms in (26) and their influence on the overall time evolution. It is then always possible, upon
a suitable scaling of the kinetic equations, to introduce a smallness parameter ε in such a way
that the initial value problem takes the singular perturbation form

∂ne

∂t
= 1

ε2
Î e

ee[ne] +
1

ε
Î e

te[nt, ne]

∂nh

∂t
= 1

ε2
Î h

hh[nh] +
1

ε
Î h

th[nh, nt]

∂nt

∂t
= 1

ε
Î t

et[ne, nt] +
1

ε
Î t

ht[nh, nt].

(41)
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We shall perform a preliminary asymptotic analysis, to leading order only, valid of course
only in the bulk region after the initial layer. All distributions should then be expanded in
asymptotic series

nα =
∞∑

j=0

εjn(j)
α (42)

and equal powers of ε should be equated in each equation. For that purpose, explicit knowledge
of the functions ϕα and ψα is needed. We shall then take

ϕα(nα) = nα ψα(nα) = 1 − nα α = e, h, t (43a)

while in the integrals defining the kernels, one should use

ϕp(np) = np ψp(np) = 1 + np. (43b)

Equilibria n∗
α (α = e, h, t) are then defined by (36), with given T. Of course, this is in

agreement with (25), which also includes n∗
p. The relevant equations can now be solved

explicitly. The well-known Fermi–Dirac and Bose–Einstein distributions, for gas particles
and phonons, respectively, are recovered.

The first step in the asymptotic algorithm, however, relevant to the O(ε−2) terms, is
independent of the chosen statistics, and reads

Î e
ee

[
n(0)

e

]
(p) = 0 Î h

hh

[
n

(0)
h

]
(p) = 0 (44)

namely two nonlinear integral equations for n(0)
e and n

(0)
h . It is remarkable that these equations

can be solved explicitly, which at least allows initialization of the procedure. We have in fact∫
log

(
ϕe

ψe
eεe/T

)
Î e

ee[ne] dp = 1

8π3

∫∫
Ĝee(p

′, p)

{
ϕe(p

′)ψe(p)

− exp

[
εe(p) − εe(p

′)
T

]
ψe(p

′)ϕe(p)

}
log

{
ϕe(p)ψe(p

′)
ψe(p)ϕe(p′)

× exp

[
εe(p) − εe(p

′)
T

]}
dp dp′ � 0 (45)

with an equal sign only if the curly bracket vanishes identically. This establishes a sort of
Boltzmann inequality for the collision operator Î e

ee alone, which from a physical point of view
corresponds to considering the c.b. electrons in the phonon background separated from the rest
of the system, coherently with this approximation order. From this inequality it is possible to
show, by usual argument, that the first of (44) is equivalent to

ϕe(p)

ψe(p)
eεe(p)/T = ϕe(p

′)
ψe(p′)

eεe(p
′)/T ∀ p, p′. (46)

The function singled out in this way must then be a constant with respect to p, that we may
label as eµe/T , and this determines the solution, up to an arbitrary time dependent parameter
µe. Repeating the same reasoning for the second of (44) and for the relevant operator Î h

hh, we
end up with the explicit expressions for n(0)

e and n
(0)
h ,

ϕe
[
n(0)

e

]
ψe

[
n

(0)
e

] (p) = exp

[
µe − εe(p)

T

]
ϕh

[
n

(0)
h

]
ψh

[
n

(0)
h

] (p) = exp

[
µh − εh(p)

T

]
. (47)

For the statistics given in (43a) they result in non-stationary Fermi–Dirac distributions. In
fact, chemical potentials are in general time-dependent and different for electrons and holes.
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Passing to the O(ε−1) terms, all three equations (41) get involved, which implies that
electrons and phonons get coupled, and new unknowns n(1)

e , n
(1)
h , n

(0)
t come in. The third

equation is still independent of the statistics used, and reads

Î t
et

[
n(0)

e , n
(0)
t

]
+ Î t

ht

[
n

(0)
h , n

(0)
t

]
(p) = 0. (48)

It is seen by inspection from (27) that the unknown n
(0)
t is always evaluated at p. Therefore,

the integral equation (48) collapses to an algebraic equation and can be solved explicitly. More
precisely

ϕt
[
n

(0)
t

]
ψ t

[
n

(0)
t

] (p) = exp

[
−εt(p)

T

]
Aht(p) + eµe/T Aet(p)

Aet(p) + eµh/T Aht(p)
(49)

where

Aet(p) =
∫

Ĝet(p
′, p)ψe

[
n(0)

e

]
(p′) exp

[
−εe(p

′)
T

]
dp′

= exp

[
−εt(p)

T

] ∫
Ĝte(p, p′)ψe

[
n(0)

e

]
(p′) dp′

Aht(p) =
∫

Ĝht(p
′, p)ψh

[
n

(0)
h

]
(p′) dp′ =

∫
Ĝth(p, p′)ψh

[
n

(0)
h

]
(p′) dp′.

(50)

The resulting zeroth-order distribution functions only depend on two free parameters, µe and
µh. Note that the trapped distribution function does not have the time-dependent Fermi–
Dirac structure of the other two species. However the ratio on the right-hand side of
(49) always belongs to a kind of time-dependent Fermi–Dirac strip (eµmin/T , eµmax/T ), with
µmin = min(µe,−µh) and µmax = max(µe,−µh). In particular, at equilibrium we have
µe = −µh = µ, so that we recover, also for trapped electrons, a stationary Fermi–Dirac
distribution with chemical potential µ.

By introducing now the low-density approximation ψe = ψh � 1, we have explicitly

n0
α(p) = cα(T )Nα exp

[
−εα(p)

T

]
α = e, h (51)

where

cα(T ) =
{

1

8π3

∫
exp

[
−εα(p)

T

]
2 dp

}−1

. (52)

Macroscopic equations are obtained from (26) by integration with respect to p. These
equations for the particle densities Nα are exact, but not closed, due to the presence of the
distribution functions in the collision integrals on the right-hand side. In particular, they
include as first integral the particle conservation law N e − Nh + N t = constant. The sought
zero-order asymptotic closure is achieved by substituting the leading order approximations
n(0)

α for nα in those integrals. This leads to the dynamical system for N e and Nh

Ṅ e = 1

32π6

∫
Aet(p) exp

[
εt(p)

T

]
n0

t (p)

[
1 − Aet(p) + ch(T )NhAht(p)

Aht(p) + ce(T )N eAet(p)
ce(T )N e

]
dp (53)

Ṅh = 1

32π6

∫
Aht(p) exp

[
εt(p)

T

]
n0

t (p)

[
Aet(p) + ch(T )NhAht(p)

Aht(p) + ce(T )N eAet(p)
− ch(T )Nh

]
dp (54)

with

n0
t (p) =

{
1 +

Aet(p) + ch(T )NhAht(p)

Aht(p) + ce(T )N eAet(p)
exp

[
εt(p)

T

]}−1

. (55)
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From (53) and (54), by introducing (55), we finally get

Ṅ e = Ṅh = 1

32π6

∫
Aet(p)Aht(p)(1 − cechN eNh) exp[εt(p)/T ]

[Aet(p) + chNhAht(p)] exp[εt(p)/T ] + Aht(p) + ceN eAet(p)
dp. (56)

Now we have for the zeroth-order approximation Ṅ e = Ṅh. This is in agreement with the
conservation law and with the fact that Ṅ t = 0 at such a level of approximation, as predicted
by (48). By the way, the latter is one of the basic assumptions in order to derive the SRH
recombination/generation rate. Actually, equation (56) may be rewritten in standard notation
[4] as Ṅ e = Ṅh = −R, where

R = 1

32π6

∫
N eNh − N#

eN
#
h

τ h
(
N e + N#

e

)
+ τ e

(
Nh + N#

h

) dp = R(N e, Nh) (57)

with

N#
e = Aht

ceAet
N#

h = Aet

chAht

τ h = e−εt/T

chAht

τ e = 1

ceAet
. (58)

Although, in general, without further assumptions on the transition probabilities G, we
are not able to ‘extract’ the explicit dependence of the recombination/generation rate on N e

and Nh, we remark that our consistent kinetic approach leads to an integrand which has the
typical form of the phenomenological SRH model [4].

6. Conclusions

In this paper we have presented two improved kinetic models for the description of
electron–phonon interaction in semiconductors. The generalization concerns inclusion
of band-trap capture and emission, and is motivated by the fact that this is the most
important recombination/generation mechanism in physical conditions which are interesting
for applications. With respect to previous literature, we consider then explicitly an evolution
equation for the population of trapped electrons, and their collision effects on the evolution
of the other species. The interacting populations in the first model are conduction band
electrons, trapped electrons, holes and phonons. In the second model the phonon population
is supposed to constitute a fixed background in local thermodynamical equilibrium, which
represents a very reasonable, and generally adopted, physical approximation. We have
tried to keep our developments as general as possible by allowing each species to obey a
general, even non-extensive, statistics. Typical methods from kinetic theory are applied in
order to derive the basic mathematical properties of the relevant nonlinear integrodifferential
Boltzmann-type equations, such as characterization of collision invariants, collision equilibria,
stability and H-theorem. These results follow from the general properties of the underlying
transition probabilities, without requiring their explicit detailed knowledge. We have also
presented preliminary results on the asymptotic analysis with respect to an appropriate small
parameter arising after a suitable scaling of the kinetic equations. Such an analysis should
lead eventually to the determination of fluid-dynamic equations at a macroscopic level. Our
first results allow us to derive, to leading order, a crucial quantity for application, namely the
recombination/generation rate for electrons and holes. The form obtained here resembles,
and, in some sense, generalizes, the well-known macroscopic SRH formula, which is generally
accepted on phenomenological grounds, but still lacks a rigorous derivation based on kinetic
theory.
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